

OPENED MAY 16TH, 2013

INDUSTRY'S ONLY CYCLING-SPECIFIC WIND TUNNEL

1,600 HOURS OF TESTING SINCE OPENING IN RENTAL TIME THIS WOULD BE NEARLY \$1.6M USD

60 PROFESSIONAL RIDERS | 200 TOTAL RIDERS TESTED SINCE OPENING

WIN TUNNEL IS 1/3 KM FROM SPECIALIZED HQ

HARDWARE AND SOFTWARE DEVELOPED AT SPECIALIZED

3 UNIQUE ASPECTS:

PRECISION RESOLUTION DOWN TO +/-0.0005 m² 2X-4X BETTER RESOLUTION VERSUS MANY TUNNELS USED IN CYCLING

SIZE

TEST SECTION IS 5m WIDE X 3m TALL X 9m LONG ALLOWS FOR TESTING MULTIPLE RIDERS, DRAFTING

SPEED

SPEED RANGE FROM 10 kph TO 115 kph COMPLETE RANGE OF SPEEDS FOR CYCLING

UNDERSTAND REAL-WORLD PERFORMANCE GAINS ON A TYPICAL ROLLING COURSE FOR THE "AERO" SYSTEM VERSUS "TRADITIONAL" CURRENT PROTOUR WINNING CONFIGURATION

> <u>AERO</u> VENGE ViAS CLX 64 WHEELS EVADE SKINSUIT EVADE HELMET

<u>TRADITIONAL</u> TARMAC PRO CL 40 WHEELS JERSEY & BIB SHORTS PREVAIL HELMET

McLAREN & SPECIALIZED

HAVE COLLABORATED ON CYCLING TECHNOLOGY SINCE 2009

THREE LIMITED EDITION PRODUCTS:

S-WORKS McLAREN VENGE S-WORKS McLAREN TT S-WORKS McLAREN TARMAC

ADDITIONAL TECHNOLOGY COLLABORATIONS HAVE PUSHED INFRASTRUCTURE AND DEVELOPMENT FORWARD

THIS EXPERIENCE AND TESTING PROTOCOL IS ONE OF THOSE SUCH PROJECTS

McLAREN APPLIED TECHNOLOGIES EXPERTS IN DATA ACQUISITION, SIMULATION, AND ANALYSIS

Mclaren

Mgpil

SHERING &

WHAT IS MIDAS?

McLAREN INTEGRATED DATA ANALYSIS AND SIMULATION

IN-HOUSE MCLAREN DEVELOPED SOFTWARE SUITE UTILIZED FOR ANALYSIS AND SIMULATION IN FORMULA 1

ALLOWS FOR SIMULATION OF VIRTUAL TEST RUNS OF A GIVEN "TRACK" AND "EQUIPMENT"

McLAREN DEVELOPED A CUSTOM GRAPHICAL USER INTERFACE (GUI) AND MATHEMATICAL SIMULATION FOR BIKE DEVELOPMENT WITHIN SPECIALIZED

THIS TOOL IS UTILIZED FOR ON-ROAD SIMULATION GIVEN RIDER SPECIFIC DATA COLLECTED

MIDAS & SPECIALIZED

MATHEMATICAL MODEL & INTERFACE FOR ON-ROAD CYCLING SIMULATION

- 1. MAP AERODYNAMIC PERFORMANCE OF CONFIGURATION IN THE WIN TUNNEL
- 2. COLLECT WIND DATA FROM COURSE
- *3. RIDE COURSE*
- 4. RUN SIMULATION WITH RIDER INPUTS WEIGHT, AERO MAP, ETC.
- 5. USE RIDE POWER PROFILE WITH NEW RIDER INPUTS TO DEMONSTRATE PERFORMANCE DIFFERENCE

COLLECTION OF AERO (C_aA m²) & MASS (kg) RIDER MAPS IN WIN TUNNEL

TWO CONFIGURATIONS: TRADITIONAL & AERO

AERO DATA COLLECTED AT 0 DEG AND 10 DEG YAW ANGLES IN ONE RIDING POSITION

2. COLLECT WIND DATA ON COURSE

SPECIALIZED RACING DEVELOPTED CAR-MOUNTED SENSOR & SOFTWARE COLLECTS GPS, ELEVATION PROFILE, COURSE HEADING, WIND SPEED, & WIND DIRECTION ON COURSE

CURRENTLY USED BY SPECIALIZED RACING FOR PROTOUR RACE EQUIPMENT SELECTION AND SIMULATION

3. RIDE THE COURSE

ON-ROAD RIDES AT RIDER'S CHOICE POWER OUTPUT TWO CONFIGURATIONS: TRADITIONAL & AERO RIDER HOLDING CONSISTENT POSITION FROM TUNNEL

COLLECTION OF DATA AT 1 HZ INCLUDING LOCATION (GPS - lat/long), ELEVATION (m), HEADING (deg), WIND SPEED (kph), WIND DIRECTION (deg), AIR DENSITY (kg/m³), & RIDER POWER (W)

19.2 KM DAY ROAD LOOP - MORGAN HILL, CALIFORNIA "SPECIALIZED TT TEST LOOP" ON STRAVA

4. RUN MIDAS SIMULATION

EXAMPLE SCREEN: TWO CONFIGURATIONS: "AERO" & "TRADITIONAL"

🕈 McLaren 🎙

TWO CONFIGURATIONS: "AERO" & "TRADITIONAL"

INSTANTANEOUS RIDER POWER (WATTS)

COURSE PROFILE & ELEVATION

TWO CONFIGURATIONS: "AERO" & "TRADITIONAL"

TWO CONFIGURATIONS: "AERO" & "TRADITIONAL"

EXPLANATION OF VELOCITY PLOT

EXAMPLE : AERO FASTER THAN TRADITIONAL LARGE VELOCITY DIFFERENCE WHERE COURSE IS DOWNHILL HIGHER VELOCITY FROM "AERO" CONFIGURATION EXAMPLE : AERO & TRADITIONAL AT SIMILAR SPEED SMALL DIFFERENCE IN VELOCITY AS RIDER CLIMBS A HILL MASS SAVINGS AND CLIMBING SPEED DECREASE LOCAL AERO BENEFIT SIMILAR VELOCITY BETWEEN TWO CONFIGURATIONS

ACCUMULATED TIME SAVED OVER COURSE

ACCUMULATED TIME SAVED OVER COURSE

McLaren

RIDER 4B - AERO

RIDER 4B - TRADITIONAL

AERO

'16 S-WORKS VENGE VIAS ROVAL CLX 64 | S-WORKS TURBO 22 FRONT, 24 REAR S-WORKS EVADE SKINSUIT S-WORKS EVADE HELMET RIB CAGE & LARGE BOTTLE (FULL), GARMIN 1000 RIDERS SELECTION: GLASSES, SOCKS, SHOES

 COMPLETE MASS (kg):
 88.1

 C_dA (m², 0 deg | 10 deg)
 0.289 | 0.291

TRADITIONAL

15 TARMAC PRO RACE ROVAL CL 40 | TURBO PRO 25 FRONT, 25 REAR SHORT SLEEVE JERSEY, BIB SHORT (RIDER'S CHOICE) S-WORKS PREVAIL HELMET RIB CAGE & LARGE BOTTLE (FULL), GARMIN 1000 RIDERS SELECTION: GLASSES, SOCKS, SHOES

 COMPLETE MASS (kg):
 87.6

 C_dA (m², 0 deg | 10 deg)
 0.322 | 0.332

RIDER 4B - TRADITIONAL VS. AERO

(PaceRep) 588

504

5. PERFORMANCE SUMMARY

UNDERSTAND REAL-WORLD PERFORMANCE GAINS ON A TYPICAL ROLLING COURSE FOR THE "AERO" SYSTEM VERSUS "TRADITIONAL" CURRENT PROTOUR WINNING CONFIGURATION

RIDER MAPPING, ON-ROAD TESTING, AND SIMULATION FOR "AERO" AND "TRADITIONAL" CONFIGURATIONS COMPLETED FOR 12 RIDERS

RESULTS ARE ON NEXT SLIDE

RIDER	AVERAGE POWER (W)	TRADITIONAL		AERO			00550
		TIME ON Course (MM:SS)	AVERAGE SPEED (KPH)	TIME ON Course (MM:SS)	AVERAGE SPEED (KPH)	TIME SAVED (sec) OVER 19.2 KM COURSE	SPEED INCREASE (kph)
1A	274.1	34:28.0	35.06	32:34.7	37.13	113	2.07
2A	317.0	32:23.0	37.08	30:45.0	39.04	98	1.96
3A	226.3	38:04.6	31.95	35:42.8	34.06	142	2.11
4A	243.6	37:33.9	32.55	35:51.4	34.10	103	1.55
5A	227.6	39:16.2	30.98	36:53.7	33.01	143	2.03
6A	234.4	35:13.3	34.28	33:04.2	36.47	129	2.19
1B	181.0	40:30.7	30.53	38:33.8	32.08	117	1.55
2B	149.6	38:41.7	31.41	36:39.7	33.15	122	1.74
3B	219.9	32:32.2	37.55	30:25.9	40.12	126	2.57
4B	271.4	31:15.7	38.50	30:07.3	39.96	68	1.46
5B	264.6	32:45.6	37.06	30:55.3	39.23	110	2.17
6B	185.0	37:16.9	33.03	34:29.5	35.67	167	2.64
AVERAGE	232.9	35:50.2	34.17	33:50.3	36.17	120	2.00
MINIMUM	149.6	31:15.7	30.53	30:07.3	32.08	68	1.46
MAXIMUM	317.0	40:30.7	38.50	38:33.8	40.12	167	2.64

	RIDER
1A	AARON GULLEY
2A	ANTONIO DEL PINO
3A	BEN DELANEY
4 A	ROBERT ANNIS
5A	WADE WALLACE
6A	FREDERICK BACKELANDT
1B	WARREN ROSSITER
2B	JOE LINDSEY
3B	LUIGI SESTILI
4B	MICHAEL CARMINATI
5B	ROBERT KUEHNEN
6B	SO ISABE

